Learning a Continuous Hidden Variable
نویسندگان
چکیده
A directed generative model for binary data using a small number of hidden continuous units is investigated. A clipping nonlinearity distinguishes the model from conventional principal components analysis. The relationships between the correlations of the underlying continuous Gaussian variables and the binary output variables are utilized to learn the appropriate weights of the network. The advantages of this approach are illustrated on a translationally invariant binary distribution and on handwritten digit images.
منابع مشابه
"Ideal Parent" Structure Learning for Continuous Variable Networks
In recent years, there is a growing interest in learning Bayesian networks with continuous variables. Learning the structure of such networks is a computationally expensive procedure, which limits most applications to parameter learning. This problem is even more acute when learning networks with hidden variables. We present a general method for significantly speeding the structure search algor...
متن کاملStable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems
Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated. In this paper, we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties, and we prove the global ...
متن کامل"Ideal Parent" Structure Learning for Continuous Variable Bayesian Networks
Bayesian networks in general, and continuous variable networks in particular, have become increasingly popular in recent years, largely due to advances in methods that facilitate automatic learning from data. Yet, despite these advances, the key task of learning the structure of such models remains a computationally intensive procedure, which limits most applications to parameter learning. This...
متن کاملLearning a Continuous Hidden Variable Model for Binary Data
A directed generative model for binary data using a small number of hidden continuous units is investigated. A clipping nonlinearity distinguishes the model from conventional principal components analysis. The relationships between the correlations of the underlying continuous Gaussian variables and the binary output variables are utilized to learn the appropriate weights of the network. The ad...
متن کاملLearning Hidden Variables in Probabilistic Graphical Models
In the past decades, a great deal of research has focused on learning probabilistic graphical models from data. A serious problem in learning such models is the presence of hidden, or latent, variables. These variables are not observed, yet their interaction with the observed variables has important consequences in terms of representation, inference and prediction. Consequently, numerous works ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998